For Queries/Clarification

alameenpublications@gmail.com

e-ISSN 2455-9288

Why publish with

ijaser

IJASER publishes high-quality, original research papers, brief reports, and critical reviews in all theoretical, technological, and interdisciplinary studies that make up the fields of advanced science and engineering and its applications.

USING NODE CENTRALITY AND OPTIMAL CONTROL TO MAXIMIZE INFORMATION DIFFUSION IN SOCIAL NETWORKS

Abstract





 



 


 

 

 

 

 


 


 

 

 

 

 


 

We model information dissemination as a susceptible-infected epidemic process and formulate a  problem to  jointly  optimize  seeds  for  the  epidemic  and  time  varying resource allocation over the period of a fixed duration campaign running  on  a  social  network  with  a  given  adjacency  matrix. Individuals  in  the   network  are  grouped  according  to  their centrality  measure and each group is influenced by an external control function—implemented through advertisements—during the  campaign  duration.  The  aim  is  to  maximize  an  objective function  which  is  a  linear  combination  of  the  reward  due  to the  fraction  of  informed  individuals  at  the  deadline,  and  the aggregated  cost  of  applying  controls  (advertising)   over   the campaign  duration.  We  also  study  a   problem   variant  with a  fixed  budget  constraint.  We  set  up  the  optimality  system using  Pontryagins  Maximum  Principle  from  optimal  control theory  and  solve  it  numerically  using  the  forward-backward sweep  technique. Our formulation allows us to compare the performance of various centrality measures (page rank,  degree, closeness  and  between’s)  in  maximizing  the   spread  of  a message   in   the   optimal   control   framework.   We   find  that degreea  simple  and  local   measure—performs  well  on  the three  social  networks   used  to  demonstrate  results:  scientific collaboration,   Slashdot  and  Face book.  The  optimal  strategy targets  central  nodes  when  the  resource  is  scarce,  but  non- central nodes are targeted when the resource is in  abundance. Our framework is general and can be used  in similar studies for  other  disease  or  information  spread  modelsthat  can  be modelled using a system of  ordinary differential equationsfor a network with a  known adjacency matrix.

 

 

 

 

 


 






 


 







Author

Mr.R.SAHUL HAMED, A.S.MOHAMMED NABIL
Download

[1]  A.    M.    Taepke,    “The    hunger    games:    Using     social    media marketing   to   bring      fiction   to    life,”    March 19, 2012, (URL:http://www.ignitesocialmedia.com/social-media-examples/hunger-games-social-media-marketing/).

[2]  A.Zoe,       “Five    social   media   charity campaigns you need     to         know   about,”  April3,2014,(URL:http://www.theguardian.com/voluntary-sector-network/2014/apr/03/five-social-

media  charity-campaigns ).

[3]  P. Domingos and M. Richardson, “Mining the network  value of customers,” in Proceedings of the International Conference  on   Knowledge Discovery and Data Mining, 2001, pp. 57–66.

[4]  D. Kempe, J. Kleinberg, and Tardos, “Maximizing  the spread of in- fluence through a social network,” in  Proceedings of the International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137146.

[5]  M. Kimura, K. Saito, and R. Nakano, “Extracting  influential nodes for information diffusion on a social  network,” in AAAI, vol. 7, 2007, pp.

 

[6]  K. Saito, M. Kimura, K. Ohara, and H. Motoda,  “Efficient discovery of influential nodes for sis models  in social networks,” Knowledge and information systems, vol. 30, no. 3, pp. 613–635, 2012.

[7]  K. Ohara, K. Saito, M. Kimura, and H. Motoda, “Predictive simulation framework of stochastic diffusion model for identifying top-k influential nodes,” in Asian Conference on Machine Learning, 2013, pp. 149–164.

[8]  W. Chen, Y. Wang, and S. Yang, “Efficient influence  maximization in social  networks,”  in  Proceedings  of  the  International  Conference  on Knowledge Discovery and Data Mining, 2009, pp. 199–208.

[9]  W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for prevalent viral marketing in large-scale social networks,” in Proceedings of  the  International  Conference  on  Knowledge  Discovery  and  Data Mining,  2010, pp. 1029–1038.

[10]  A. Goyal, W. Lu, and L. V. S. Lakshmanan, “Celf++:  Optimizing the greedy  algorithm  for  influence  maximization  in  social  networks,”  in Proceedings of the 20th International Conference Companion on World Wide Web.    ACM, 2011, pp. 47–48. [12]  D. E. Kirk, Optimal control theory: an introduction.    Courier Corpora- tion, 2012.

[11]  J.-P. Onnela and et. al., “Structure and tie strengths in mobile communication networks,” Proc. Natl. Acad. Sci. USA, vol.  104, no. 18, pp.7332–7336,  2007.

[12]  A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An  epidemic model for information diffusion in manets,”  in  ACM International Workshop on Modelling Analysis  and Simulation of Wireless and Mobile Systems,2002, pp. 54–60.

-->